It is well accepted that an increase in the expression of cyclooxygenase-2 (COX-2), a key inducible enzyme involved in the production of prostaglandins and other eicosanoids, may play a significant role in carcinogenesis in addition to its well-known role in inflammatory reactions. Whereas previous studies were largely confined to colorectal tumorigenesis, we have shown that a significantly increased expression of COX-2 may also play a role in the development of lung cancer. COX-2 expression was found to be frequently elevated in lung cancer, especially in adenocarcinoma, and the proportion of lung cancer cells with marked COX-2 expression was much higher in lymph node metastases than in the corresponding primary tumors. It was also shown that early stage adenocarcinoma patients with increased COX-2 expression who were surgically treated had a shorter survival. Our studies, which used high- and low-metastatic human lung cancer cell sublines established in our laboratory, revealed an association between metastatic capabilities and COX-2 expression levels: COX-2-specific inhibitors could inhibit in vitro the invasion of the highly metastatic NCI-H460-LNM35 clone through Matrigel-containing basement membrane components as well as the spontaneous in vivo metastasis in SCID mice. Taken together, these findings suggest that an increase in COX-2 expression maybe associated with the development of lung cancer and possibly with the acquisition of an invasive and metastatic phenotype.