Leptin is a cytokine involved in regulation of the satiety response. Receptors for this protein have been identified in brain as well as many other peripheral tissues. Some of the highest levels of receptor concentration occur in the lung. Considering the cellular diversity of lung, neither the localization nor the function of leptin in pulmonary tissues has been delineated. The purpose of the present study was to determine if fetal and adult rabbit lung displayed specific binding for leptin, to identify the binding sites, and to explore a potential functional role for leptin in lung surfactant production. Frozen sections of adult and fetal rabbit (24th gestational day) lung were prepared and incubated with increasing concentrations of [125I]leptin in the presence or absence of 1-microM-unlabeled leptin. Sections were removed and radioactivity measured. Concurrently, sections were coated with nuclear Trac emulsion and incubated in the dark at -30 degrees C. Lung showed specific binding for leptin. Microscopically, [125I]leptin was localized to acinar-lining epithelium of developing fetal lung. Larger cells within the epithelial layer appeared to bind leptin more avidly than adjacent cells. Antibodies to the leptin receptor were used to identify binding sites in adult lung and isolated fetal lung type II cells. In adult lung, both the K20 (against the extracellular amino-terminal) and the M18 antibody (against the intracellular carboxy-terminal) displayed several binding sites. In contrast, the isolated fetal type II cells showed only a single binding site for both antibodies. The apparent molecular mass of the receptor using the K20 antibody appeared to be approximately 125 kD. A protein of similar mass bound the M18 antibody suggesting that functional receptor is present in lung and expressed by fetal type II cells. Incubation of isolated fetal type II cells with leptin (0.01-10 microg/ml) stimulated [3H]choline incorporation in disaturated phosphatidylcholine. These results show that fetal and adult lung bind leptin specifically, and fetal type II cells in particular, may be responsive to leptin stimulation of phospholipid production. Leptin may therefore be important in regulating maturation of cells of the fetal lung.