Mitochondria act as a focal point for upstream apoptosis signals by releasing cytochrome c into the cytosol, leading to the activation of caspases and subsequent cell death. Members of the Bcl-2 protein family regulate this phenomenon by heterodimerization via the BH3 domain of proapoptotic members opposing their pro- and antiapoptotic functions. The mechanism of cytochrome c release from mitochondria and of its regulation remains controversial. In vitro binding studies of purified and biologically active proteins should help in understanding the molecular mechanism of interactions and protein functions. In this work, the Bcl-2-related antiapoptotic chicken protein Nr-13 was overexpressed as a highly soluble recombinant protein which showed correct folding as judged by circular dichroism and fluorescence spectroscopy. Purified Nr-13 inhibits caspase-3 activation in a Xenopus egg-derived cell-free system, and neutralizes the proapoptotic activity of a synthetic peptide containing the BH3 domain of Bax. The latter effect correlates with the high-affinity binding of the BH3 peptide to Nr-13 as monitored by the intrinsic tryptophan fluorescence. On the basis of the structural similarity with Bcl-x(L), putative residues involved in this interaction were identified. Nr-13 exhibits a high-affinity interaction with cytochrome c which is prevented by preincubation with the BH3-Bax peptide. These findings are discussed with respect to a model for the regulation of apoptosis in which a direct interaction between the antiapoptotic protein and cytochrome c may prevent the apoptosis.