Toll-like receptor (TLR) signaling activates dendritic cells (DC) to secrete proinflammatory cytokines and up-regulate co-stimulatory molecule expression, thereby linking innate and adaptive immunity. A TLR-associated adapter protein, MyD88, is essential for cytokine production induced by TLR. However, in response to a TLR4 ligand, lipopolysaccharide (LPS), MyD88-deficient (MyD88(-/-)) DC can up-regulate co-stimulatory molecule expression and enhance their T cell stimulatory activity, indicating that the MyD88-independent pathway through TLR4 can induce some features of DC maturation. In this study, we have further characterized function of LPS-stimulated, MyD88(-/-) DC. In response to LPS, wild-type DC could enhance their ability to induce IFN-gamma production in allogeneic mixed lymphocyte reaction (alloMLR). In contrast, in response to LPS, MyD88(-/-) DC augmented their ability to induce IL-4 instead of IFN-gamma in alloMLR. Impaired production of T(h)1-inducing cytokines in MyD88(-/-) DC cannot fully account for their increased T(h)2 cell-supporting ability, because absence of T(h)1-inducing cytokines in DC caused impairment of IFN-gamma, but did not lead to augmentation of IL-4 production in alloMLR. In vivo experiments with adjuvants also revealed T(h)2-skewed immune responses in MyD88(-/-) mice. These results demonstrate that the MyD88-independent pathway through TLR4 can confer on DC the ability to support T(h)2 immune responses.