A novel selectively deprotectable triazacyclophane scaffold was used for the design and split-mix synthesis of two libraries of solid-phase bound tripodal synthetic receptors possessing three different amino acid or peptidic arms. In the synthesis of the first library, the two outer arms consisted of amino acid Ala, Arg, Asp, Gln, Gly, Lys, Phe, Ser, Tyr, or Val and the middle arm consisted of amino acid Asn, Glu, His, Leu, or Pro. The second library contained amino acid and/or (di)peptide arms. The arms were different in all library members. The first outer arm consisted of amino acid(s) Ala, Arg, Gln, Phe, or Ser, the second outer arm consisted of amino acid(s) Asp, Gly, Lys, Tyr, or Val, and the middle arm consisted of amino acid(s) Asn, Glu, His, Leu, or Pro, leading to a 27 000 member library of synthetic tripodal receptor molecules. In on-bead screening experiments, a remarkable selectivity of some library members for Fe(3+) was observed and decoding of their structures by Edman degradation revealed consensus sequences with structural resemblance to non-heme iron proteins.