The upside-down swimming catfish (Synodontis nigriventris) has unique behavior, i.e., it frequently shows a stable upside-down posture during swimming and resting. To examine whether the unique postural control in S. nigriventris results from the characteristics of the vestibular organ, we observed the morphological aspects of the otolith and the orientation of sensory hair cells in the utricle. Soft X-ray densitometry analysis showed that the transmittance of soft X-rays in the otolith of S. nigriventris was higher than that in a closely related species (Synodontis multipunctatus) belonging to Synodontis family, goldfish (Carassius auratus) or miniature catfish (Corydoras paleatus) which shows upside-up swimming. The higher transmittance of soft X-rays suggests that the density of the otolith in S. nigriventris is lower than that in S. multipunctatus, C. auratus or C. paleatus. It is possible that the low density of the otolith may have a relation to the control of the unique upside-down posture of S. nigriventris. The hair cells in S. nigriventris were present at the ventral to ventro-lateral site of the utricular epithelium, forming a single hair cell layer as in the other 3 species of fish. The orientation of the sensory hair cells does not appear to cause the unique postural control.