We tested a computer-based procedure for assessing reader strategies that was based on verbal protocols that utilized latent semantic analysis (LSA). Students were given self-explanation-reading training (SERT), which teaches strategies that facilitate self-explanation during reading, such as elaboration based on world knowledge and bridging between text sentences. During a computerized version of SERT practice, students read texts and typed self-explanations into a computer after each sentence. The use of SERT strategies during this practice was assessed by determining the extent to which students used the information in the current sentence versus the prior text or world knowledge in their self-explanations. This assessment was made on the basis of human judgments and LSA. Both human judgments and LSA were remarkably similar and indicated that students who were not complying with SERT tended to paraphrase the text sentences, whereas students who were compliant with SERT tended to explain the sentences in terms of what they knew about the world and of information provided in the prior text context. The similarity between human judgments and LSA indicates that LSA will be useful in accounting for reading strategies in a Web-based version of SERT.