Exposure of macrophages to endotoxin [lipopolysaccharide (LPS)] results in a cascade of events resulting in the release of multiple inflammatory and anti-inflammatory mediators. The Toll-like receptor (TLR) 4 complex is the major receptor that mediates LPS signaling. However, there is evidence that other surface molecules may play a complementary role in the TLR-induced events. Integrin receptors are one class of receptors that have been linked to LPS signaling. This study investigates the role of macrophage integrin receptors in the activation of mitogen-activated protein (MAP) kinases by LPS. In conditions where macrophages were not permitted to adhere to matrix or a tissue culture surface, we found a decrease in LPS signaling as documented by a marked reduction in tyrosine phosphorylation of whole cell proteins. This was accompanied by a significant decrease in extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase MAP kinase activation. Inhibition of integrin signaling, with EDTA or RGD peptides, decreased LPS-induced MAP kinase activity. The functional consequence of blocking integrin signaling was demonstrated by decreased LPS-induced tumor necrosis factor-alpha production. These observations demonstrate that, in addition to the TLR receptor complex, optimal LPS signaling requires complementary signals from integrin receptors.