The transcription factor hypoxia-inducible factor-1 (HIF-1) strongly contributes to the expression of adaptive genes under hypoxic conditions. In addition, HIF-1 has been implicated in the regulation of delayed neuronal cell death. Suspension-grown and adherent PC12 cells treated with NGF were used as an experimental model for studying the relationship between hypoxia-induced cell death and activation of HIF-1. Cell damage was assessed by flow cytometry of double-stained (Annexin V and propidiumiodide) cells, and by analysis of the overall death parameters LDH and mitochondrial dehydrogenase. In parallel, cells were transfected with a control and a three-hypoxia-responsive-elements (HRE)-containing vector and HIF-1-driven luciferase activity was determined. Exposure of NGF-treated PC12 cells to hypoxia resulted in a higher cell death rate when compared to untreated controls. PC12 cells exposed for 2 days to NGF exhibited a decrease of HIF-1 activity up to a factor of ten. This decrease may contribute to the enhanced hypoxia-induced cell death via reduced expression of HIF-1alpha-regulated genes responsible for adaptation to hypoxia, like those for glucose transport proteins and enzymes of the glycolytic chain. The decrease in HIF-1 activity and the increase in hypoxia sensitivity may suggest that NGF act as an hierarchically organized signaling molecule.