The catalytic CO + NO reaction to form CO2, N2, and N2O has been studied on a Pd(111) surface at pressures up to 240 mbar using in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS). At 240 mbar, for a pressure ratio of PCO:PNO = 3:2 and under reaction conditions, besides adsorbed CO, the formation of isocyanate (-NCO) was observed. Once produced at 500-625 K, the isocyanate species was stable within the entire temperature range studied (300-625 K). On the other hand, its formation required a total CO + NO pressure of at least 0.6 mbar, illustrating the importance of in situ infrared experiments under high-pressure conditions. The significance of the isocyanate formation for the CO + NO reaction on Pd(111) is discussed.