Hypercholesterolemia (HC) is characterized by increased circulating 8-epi-prostaglandin-F(2alpha) (isoprostane), a vasoconstrictor, marker, and mediator of increased oxidative stress, whose vascular effects might be augmented in HC. Anesthetized pigs were studied in vivo with electron beam computed tomography after a 12-wk normal (n = 8) or HC (n = 8) diet. Mean arterial pressure (MAP), single-kidney perfusion, and glomerular filtration rate (GFR) were quantified before and during unilateral intrarenal infusions of U46619 (10 ng x kg(-1) x min(-1)) or isoprostane (1 microg x kg(-1) x min(-1)). Basal renal perfusion and function were similar, and isoprostane infusion elevated its systemic levels similarly in normal and HC (333 +/- 89 vs. 366 +/- 48 pg/ml, respectively, P < 0.01 vs. baseline). Both drugs markedly and comparably decreased cortical perfusion and GFR in both groups, whereas medullary perfusion decreased significantly only in HC. Moreover, MAP increased significantly only in HC (+9 +/- 3 and +11 +/- 3 mmHg, respectively, P<or= 0.05). Hence, in HC, renal functional responses to high-dose isoprostane are largely similar to normal, but the systemic circulation exhibits augmented sensitivity to pathophysiological levels of isoprostane and U46619, which may potentially play a role in development of hypertension and vascular injury associated with increased oxidative stress.