The La protein was recently identified as a host factor potentially involved in the cytokine-induced post-transcriptional down-regulation of hepatitis B virus (HBV) RNA. The La binding site was mapped to a predicted stem-loop structure within a region shared by all HBV RNAs, and it was concluded that the La protein might be an HBV RNA-stabilizing factor. To characterize the RNA binding mediated by the different RNA recognition motifs (RRMs) of the human La protein, several La deletion mutants were produced and analyzed for HBV RNA binding ability. The data demonstrate that the first RRM is not required for binding, whereas the RNP-1 and RNP-2 consensus sequences of the RRM-2 and RRM-3 are separately required for binding, indicating a cooperative function of these two RRMs. Furthermore, the results suggest that multimeric La disassembles into monomeric La upon binding of HBV RNA.B. By gel retardation assay the affinity of the wild type human La.HBV RNA.B interaction was determined in the nanomolar range, comparable to the affinity determined for the mouse La.HBV RNA.B interaction. This study identified small regions within the human La protein mediating the binding of HBV RNA. Hence, these binding sites might represent targets for novel antiviral strategies based on the disruption of the human La.HBV RNA interaction, thereby leading to HBV RNA degradation.