A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine

Cardiovasc Res. 2002 Aug 1;55(2):279-89. doi: 10.1016/s0008-6363(02)00445-5.

Abstract

Objective: Mutations in the cardiac sodium channel gene, SCN5A, cause congenital long QT syndrome (LQT3), Brugada syndrome, idiopathic ventricular fibrillation, and conduction disease by distinct cellular and clinical electrophysiological phenotypes.

Methods: Postmortem molecular analysis of SCN5A was conducted on an infant who presented shortly after birth with self-terminating torsades de pointes. The infant was treated with lidocaine, propranolol, and mexiletine and was stable for 16 months manifesting only a prolonged QT interval. The infant collapsed suddenly following presumed viral gastroenteritis, was found in 2:1 AV block, and was subsequently declared brain dead. Genomic DNA was subjected to SCN5A mutational analyses and DNA sequencing revealing a novel, spontaneous germline missense mutation, M1766L. The M1766L mutation was engineered into the hH1a clone by site-directed mutagenesis, transfected into embryonic kidney cells (HEK-293), and studied by voltage clamp.

Results: The M1766L mutation caused a significant decrease in the sodium channel expression. Co-expression with beta1 subunit, incubation at low temperature, and most effectively incubation with mexiletine partially 'rescued' the defective expression. In addition to this pronounced loss of function, M1766L also showed a 10-fold increase in the persistent late sodium current.

Conclusions: These findings suggest that M1766L-SCN5A channel dysfunction may contribute to the basis of lethal arrhythmias, displays an overlapping electrophysiological phenotype, and represents the first sodium channelopathy rescued by drug.

Publication types

  • Case Reports

MeSH terms

  • Anti-Arrhythmia Agents / therapeutic use*
  • DNA Mutational Analysis
  • Electrocardiography
  • Fatal Outcome
  • Follow-Up Studies
  • Humans
  • Infant, Newborn
  • Long QT Syndrome / drug therapy
  • Long QT Syndrome / genetics*
  • Male
  • Mexiletine / therapeutic use*
  • Mutation, Missense*
  • NAV1.5 Voltage-Gated Sodium Channel
  • Sodium Channels / genetics*

Substances

  • Anti-Arrhythmia Agents
  • NAV1.5 Voltage-Gated Sodium Channel
  • SCN5A protein, human
  • Sodium Channels
  • Mexiletine