In epithelial cells beta-catenin plays a critical role as a component of the cell-cell adhesion apparatus and as a coactivator of the TCF/LEF (T-cell transcription factor/lymphoid enhancer binding factor) family of transcription factors. Deregulation of beta-catenin has been implicated in the malignant transformation of cells of epithelial origin. However, a function for beta-catenin in hematologic malignancies has not been reported. beta-Catenin is not detectable in normal peripheral blood T cells but is expressed in T-acute lymphoblastic leukemia cells and other tumor lines of hematopoietic origin and in primary lymphoid and myeloid leukemia cells. beta-Catenin function was examined in Jurkat T-acute lymphoblastic leukemia cells. Overexpression of dominant-negative beta-catenin or dominant-negative TCF reduced beta-catenin nuclear signaling and inhibited Jurkat proliferation and clonogenicity. Similarly, these constructs inhibited proliferation of K562 and HUT-102 cells. Reduction of beta-catenin expression with beta-catenin antisense down-regulated adhesion of Jurkat cells in response to phytohemagglutinin. Incubation of Jurkat cells with anti-Fas induced caspase-dependent limited proteolysis of beta-catenin N- and C-terminal regions and rapid redistribution of beta-catenin to the detergent-insoluble cytoskeleton, concomitant with a marked decline in nuclear beta-catenin signaling. Fas-mediated apoptosis was potentiated by inhibition of beta-catenin nuclear signaling. The data suggest that beta-catenin can play a significant role in promoting leukemic cell proliferation, adhesion, and survival.