It has been recently described that some non-steroidal anti-inflammatory drugs (NSAIDs) are able to induce the shedding of L-selectin in neutrophils, an adhesion molecule that plays an essential role in the inflammatory response. We have found that, according to this capability, NSAIDs could be grouped into three categories. A high releaser group (flufenamic, meclofenamic, and mefenamic acids, diclofenac and aceclofenac), a group of moderate releasers (aspirin, indomethacin, nimesulide, flurbiprofen, and ketoprofen), and a non-releaser group (phenylbutazone and the oxicams, piroxicam and meloxicam). Only NSAIDs from the high releaser group shared diphenylamine in their chemical structure. The amine group of this chemical agent proved to be essential for the anti-L-selectin activity of diphenylamine-based NSAIDs. The presence of a carboxylic acid group in the diphenylamine (N-phenylanthranilic acid) highly increased its ability to reduce the L-selectin surface expression in neutrophils. Diphenylamine and N-phenylanthranilic acid neither affected COX activity in platelets nor modified the activation state of neutrophils. Diphenylamine-related compounds, which include the diphenylamine-based NSAIDs caused a variable reduction in the neutrophil intracellular ATP concentration, which correlated with the differential ability of such compounds to trigger L-selectin shedding (r = 0.97, p < 0.01). Diphenylamine-related compounds failed to down-regulate L-selectin in a tumor necrosis factor-alpha-converting enzyme (TACE)-deficient murine monocytic cell line. Our data indicate that diphenylamine seems to be the structural core of NSAIDs accounting for their down-regulatory activity of L-selectin leukocyte expression. Diphenylamine and its related compounds exert this action on L-selectin through a prostaglandin-independent, TACE-dependent mechanism that seems to be linked to the capability of these agents to uncouple the mitochondrial oxidative phosphorylation.