A slat collimator in single photon emission computed tomography consists of a set of parallel slats. As the collimator spins, the detector measures a one-dimensional projection data set. A complete data set can be obtained by rotating the detector/collimator assembly around the object (patient) while the collimator spins continuously. The measured projection data are assumed to be weighted planar integrals of the object. This paper describes the development of an approximate three-dimensional image reconstruction algorithm for a rotating/spinning slat collimator. This algorithm is in filtered backprojection form. Computer simulations were performed to verify the effectiveness of the algorithm.