The T locus of soybean (Glycine max (L.) Merr.) controls pubescence and seed coat color and is presumed to encode flavonoid 3'-hydroxylase (F3'H). The dominant T and the recessive t allele of the locus produce brown and gray pubescence, respectively. PCR primers were constructed based on the sequence of a soybean EST clone homologous to the F3'H gene. A putative full-length cDNA, sf3'h1 was isolated by 3' and 5' RACE. Sequence analysis revealed that sf3'h1 consists of 1690 nucleotides encoding 513 amino acids. It had 68% and 66% homology with corresponding F3'H protein sequences of petunia and Arabidopsis, respectively. A conserved amino acid sequence of F3'H proteins, GGEK, was found in the deduced polypeptide. Sequence analysis of the gene from a pair of near-isogenic lines for T, To7B (TT, brown) and To7G (tt, gray) revealed that they differed by a single C deletion in the coding region of To7G. The deletion changed the subsequent reading frame resulting in a truncated polypeptide lacking the GGEK consensus sequence and the heme-binding domain. Genomic Southern analysis probed by sf3'h1 revealed restriction fragment length polymorphisms between cultivars with different pubescence color. Further, sf3'h1 was mapped at the same position with T locus on LG3(c2). PCR-RFLP analysis was performed to detect the single-base deletion. To7B and three cultivars with brown pubescence exhibited shorter fragments, while To7G and three cultivars with gray pubescence had longer fragments due to the single-base deletion. The PCR-RFLP marker co-segregated with genotypes at the T locus in a F2 population segregating for the T locus. The above results strongly suggest that sJ3'h1 represents the T gene of soybean responsible for pubescence color and that the single-base deletion may be responsible for gray pubescence color.