Adsorption-desorption behavior of copper at contaminated levels in red soils from China

J Environ Qual. 2002 Jul-Aug;31(4):1129-36. doi: 10.2134/jeq2002.1129.

Abstract

Adsorption-desorption of copper (Cu2+) at contaminated levels in two red soils was investigated. The red soil derived from the Quaternary red earths (clayey, kaolinitic thermic plinthite Aquult) (REQ) adsorbed more Cu2+ than the red soil developed on the Arenaceous rock (clayey, mixed siliceous thermic typic Dystrochrept) (RAR). The maximum adsorption values (M(A)) that are obtained from the simple Langmuir model were 25.90 and 20.17 mmol Cu2+ kg(-1) soil, respectively, for REQ and RAR. Adsorption of Cu2+ decreased soil pH, by 0.8 unit for the REQ soil and 0.6 unit for the RAR soil at the highest loadings. The number of protons released per Cu2+ adsorbed increased sigmoidally with increasing initial Cu2+ concentration for the RAR soil, but the relationship was almost linear for the REQ soil. The RAR soil released about 2.57 moles of proton per mole of Cu2+ adsorbed at the highest Cu2+ loading and the corresponding value for the REQ soil was 1.12. The distribution coefficient (Kd) decreased exponentially with increasing Cu2+ loading. Most of the adsorbed Cu2+ in the soils was readily desorbed in the NH4Ac. After five successive extractions with 1 mol L(-1) NH4Ac (p 5.0), 61 to 95% of the total adsorbed Cu2+ in the RAR soil was desorbed and the corresponding value for the REQ soil was 85 to 92%, indicating that the RAR soil had a greater affinity for Cu2+ than the REQ soil at low levels of adsorbed Cu2+.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Aluminum Silicates
  • China
  • Clay
  • Copper / chemistry*
  • Environmental Monitoring
  • Kinetics
  • Silicon
  • Soil Pollutants / analysis*

Substances

  • Aluminum Silicates
  • Soil Pollutants
  • Copper
  • Clay
  • Silicon