To remain viable, cells have to coordinate cell growth with cell division. In yeast, this occurs at two control points: the boundaries between G1 and S phases, also known as Start, and between G2 and M phases. Theoretically, coordination can be achieved by independent regulation of growth and division, or by participation of surveillance mechanisms in which cell size feeds back into cell-cycle control. This article discusses recent advances in the identification of sizing mechanisms in budding and in fission yeast, and how these mechanisms integrate with environmental stimuli. A comparison of the G1-S and G2-M size-control modules in the two species reveals a degree of conservation higher than previously thought. This reinforces the notion that internal sizing could be a conserved feature of cell-cycle control throughout eukaryotes.