Lactate metabolism in resting and contracting canine skeletal muscle with elevated lactate concentration

J Appl Physiol (1985). 2002 Sep;93(3):865-72. doi: 10.1152/japplphysiol.01119.2001.

Abstract

This study was undertaken to quantitatively account for the metabolic disposal of lactate in skeletal muscle exposed to an elevated lactate concentration during rest and mild-intensity contractions. The gastrocnemius plantaris muscle group (GP) was isolated in situ in seven anesthetized dogs. In two experiments, the muscles were perfused with an artificial perfusate with a blood lactate concentration of ~9 mM while normal blood gas/pH status was maintained with [U-(14)C]lactate included to follow lactate metabolism. Lactate uptake and metabolic disposal were measured during two consecutive 40-min periods, during which the muscles rested or contracted at 1.25 Hz. Oxygen consumption averaged 10.1 +/- 2.0 micromol. 100 g(-1). min(-1) (2.26 +/- 0.45 ml. kg(-1). min(-1)) at rest and 143.3 +/- 16.2 micromol. 100 g(-1). min(-1) (32.1 +/- 3.63 ml. kg(-1). min(-1)) during contractions. Lactate uptake was positive during both conditions, increasing from 10.5 micromol. 100 g(-1). min(-1) at rest to 25.0 micromol. 100 g(-1). min(-1) during contractions. Oxidation and glycogen synthesis represented minor pathways for lactate disposal during rest at only 6 and 15%, respectively, of the [(14)C]lactate removed by the muscle. The majority of the [(14)C]lactate removed by the muscle at rest was recovered in the muscle extracts, suggesting that quiescent muscle serves as a site of passive storage for lactate carbon during high-lactate conditions. During contractions, oxidation was the dominant means for lactate disposal at >80% of the [(14)C]lactate removed by the muscle. These results suggest that oxidation is a limited means for lactate disposal in resting canine GP exposed to elevated lactate concentrations due to the muscle's low resting metabolic rate.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Dogs
  • Glycogen / biosynthesis
  • Lactates / metabolism*
  • Lactates / pharmacokinetics
  • Muscle Contraction
  • Muscle, Skeletal / metabolism*
  • Osmolar Concentration
  • Oxidation-Reduction
  • Oxygen Consumption
  • Rest

Substances

  • Lactates
  • Glycogen