Structurally tachykinin-related peptides have been isolated from various invertebrate species and shown to exhibit their biological activities through a G-protein-coupled receptor (GPCR) for a tachykinin-related peptide. In this paper, we report the identification of a novel tachykinin-related peptide receptor, the urechistachykinin receptor (UTKR) from the echiuroid worm, Urechis unitinctus. The deduced UTKR precursor includes seven transmembrane domains and typical sites for mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors. A functional analysis of the UTKR expressed in Xenopus oocytes demonstrated that UTKR, like tachykinin receptors and tachykinin-related peptide receptors, activates calcium-dependent signal transduction upon binding to its endogenous ligands, urechistachykinins (Uru-TKs) I-V and VII, which were isolated as Urechis tachykinin-related peptides from the nervous tissue of the Urechis unitinctus in our previous study. UTKR responded to all Uru-TKs equivalently, showing that UTKR possesses no selective affinity with Uru-TKs. In contrast, UTKR was not activated by substance P or an Uru-TK analog containing a C-terminal Met-NH2 instead of Arg-NH2. Furthermore, the genomic analysis revealed that the UTKR gene, like mammalian tachykinin receptor genes, consists of five exons interrupted by four introns, and all the intron-inserted positions are completely compatible with those of mammalian tachykinin receptor genes. These results suggest that mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors were evolved from a common ancestral GPCR gene. This is the first identification of an invertebrate tachykinin-related peptide receptor from other species than insects and also of the genomic structure of a tachykinin-related peptide receptor gene.