Neomenioid aplacophorans (= Solenogastres) constitute one of the main lineages of molluscs. Developmental data of early embryogenesis and larval development of neomenioids are available for some species based on histological sections. I used other techniques to study the development of Epimenia babai Salvini-Plawen, 1997, and here I report new data on neomenioid development. The embryos of E. babai are lecithotrophic and cleavage is spiral, unequal, and holoblastic. Two polar lobes are formed, one at the first cleavage stage and one at the second cleavage stage. No evidence of external metameric iteration is visible through scanning electron microscopy or histology at any stage. A ciliated foot, a pedal pit, and aragonitic spicules develop from the definitive ectoderm. A spicule begins as a solid tip, continues to an open-ended hollow spicule, and finally becomes a closed-ended hollow spicule. The free-swimming trochophore larvae of E. babai have been considered unusual in lacking the characteristic neomenioid cellular test, an outer locomotory structure within which the entire definitive adult body develops. However, through the use of scanning electron and light microscopy, semithin sections, Hoechst nuclear staining, and programmed cell death staining to study the ontogeny and fate of the apical cells, I show that the entire pre-oral sphere (the apical cap) of the larvae is similar to the test of the other neomenioids. The results suggest that the test of the neomenioid larvae is an enlarged pre-oral sphere of a trochophore. The test morphologies of neomenioid larvae are compared to those of pericalymma larvae of protobranch bivalves, and the homology and evolution of molluscan larval tests is discussed.