A model for diamond nucleation by energetic species (for example, bias-enhanced nucleation) is proposed. It involves spontaneous bulk nucleation of a diamond embryo cluster in a dense, amorphous carbon hydrogenated matrix; stabilization of the cluster by favorable boundary conditions of nucleation sites and hydrogen termination; and ion bombardment-induced growth through a preferential displacement mechanism. The model is substantiated by density functional tight-binding molecular dynamics simulations and an experimental study of the structure of bias-enhanced and ion beam-nucleated films. The model is also applicable to the nucleation of other materials by energetic species, such as cubic boron nitride.