Validated liquid chromatography/tandem mass spectrometric (LC/MS/MS) methods are now widely used for quantitation of drugs in post-dose (incurred) biological samples for the assessment of pharmacokinetic parameters, bioavailability and bioequivalence. In accordance with the practice currently accepted within the pharmaceutical industry and the regulatory bodies, validation of a bioanalytical LC/MS/MS method is performed using standards and quality control (QC) samples prepared by spiking the drug (the analyte) into the appropriate blank biological matrix (e.g. human plasma). The method is then declared to be adequately validated for analyzing incurred biological samples. However, unlike QC samples, incurred samples may contain an epimer or another type of isomer of the drug, such as a Z or E isomer. Such a metabolite will obviously interfere with the selected reaction monitoring (SRM) transition used for the quantitation of the drug. The incurred sample may also contain a non-isomeric metabolite having a molecular mass different from that of the drug (such an acylglucuronide metabolite) that can still contribute to (and hence interfere with) the SRM transition used for the quantitation of the drug. The potential for the SRM interference increases with the use of LC/MS/MS bioanalytical methods with very short run times (e.g. 0.5 min). In addition, a metabolite can potentially undergo degradation or conversion to revert back to the drug during the multiple steps of sample preparation that precede the introduction of the processed sample into the LC/MS/MS system. In this paper, we recommend a set of procedures to undertake with incurred samples, as soon as such samples are available, in order to establish the validity of an LC/MS/MS method for analyzing real-life samples. First, it is recommended that the stability of incurred samples be investigated 'as is' and after sample preparation. Second, it is recommended that potential SRM interference be investigated by analyzing the incurred samples using the same LC/MS/MS method but with the additional incorporation of the SRM transitions attributable to putative metabolites (multi-SRM method). The metabolites monitored will depend on the expected metabolic products of the drug, which are predictable based on the functional groups present in the chemical structure of the drug. Third, it is recommended that potential SRM interference be further investigated by analyzing the incurred samples using the multi-SRM LC/MS/MS method following the modification of chromatographic conditions to enhance chromatographic separation of the drug from any putative metabolites. We will demonstrate the application of the proposed strategy by using a carboxylic acid containing drug candidate and its acylglucuronide as a putative metabolite. Plasma samples from the first-in-man (FIM) study of the drug candidate were used as the incurred samples.
Copyright 2002 John Wiley & Sons, Ltd.