Epilepsy affects more than 0.5% of the world's population and has a large genetic component. The most common human genetic epilepsies display a complex pattern of inheritance and the susceptibility genes are largely unknown. However, major advances have recently been made in our understanding of the genetic basis of monogenic inherited epilepsies. Progress has been particularly evident in familial idiopathic epilepsies and in many inherited symptomatic epilepsies, with the discovery that mutations in ion channel subunits are implicated, and direct molecular diagnosis of some phenotypes of epilepsy is now possible. This article reviews recent progress made in molecular genetics of epilepsy, focusing mostly on idiopathic epilepsy, and some types of myoclonus epilepsies. Mutations in the neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunit genes have been detected in families with autosomal dominant nocturnal frontal lobe epilepsy, and those of two K(+) channel genes were identified to be responsible for underlying genetic abnormalities of benign familial neonatal convulsions. The voltage-gated Na(+) -channel (alpha1,2 and beta1 subunit), and GABA receptor (gamma2 subunit) may be involved in the pathogenesis of generalized epilepsy with febrile seizure plus and severe myoclonic epilepsy in infancy. Mutations of Ca(2+)-channel can cause some forms of juvenile myoclonic epilepsy and idiopathic generalized epilepsy. Based upon these findings, pathogenesis of epilepsy as a channelopathy and perspectives of molecular study of epilepsy are discussed.