Characterization of a carbohydrate response element regulating the gene for human galactose-1-phosphate uridyltransferase

Mol Genet Metab. 2002 Aug;76(4):287-96. doi: 10.1016/s1096-7192(02)00106-3.

Abstract

Human galactose-1-phosphate uridyltransferase (hGALT) is a central enzyme in the conserved pathway by which galactose is converted to energy, UDP-galactose and UDP-glucose. A natural mutation that deleted -119 to -116 bp (delGTCA) of the promoter decreased hGALT mRNA and enzyme activity and prompted analysis of hGALT gene regulation. Regulatory domains were identified by inspection and confirmed in a reporter system. Previous studies by others were confirmed that HepG2 cells grown in D-glucose increased hGALT enzyme activity and mRNA by 30%. We extended these observations by sequencing the promoter region and identifying a potential carbohydrate response element (ChoRE). The response to glucose rose to 190% when a plasmid construct containing a luciferase reporter and only the -165 bp region as a promoter was transfected into HepG2 and NIH:OVCAR-3. By contrast, fibroblasts transfected with the identical construct failed to respond to glucose. Within the -165 bp region there were two enhancer (E-box) motifs that encompassed the delGTCA mutation. The deletion diminished the positive regulatory response, but an additional GTCA repeat unexpectedly increased the response. Using this postulated ChoRE as a probe in electrophoretic mobility shift assays, multiple nuclear proteins bound and one was identified as a member of the basic/helix-loop-helix/leucine zipper enhancer-binding (b/HLH/LZ) family. Increased binding of proteins correlated with increased hGALT expression when the spacing between E-box motifs was enlarged but the carbohydrate response was dampened. When the 3(')E-box was mutated, b/HLH/LZ binding and gene expression were abolished. We conclude that the hGALT promoter region contains a ChoRE in which the spacing between and the sequence of its E-box motifs are critical. One nuclear protein of the b/HLH/LZ family is necessary, but not sufficient for the carbohydrate response.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Binding Sites
  • Cell Line
  • E-Box Elements / genetics
  • E-Box Elements / physiology
  • Gene Expression Regulation*
  • Glucose / metabolism
  • Humans
  • Promoter Regions, Genetic / physiology
  • UTP-Hexose-1-Phosphate Uridylyltransferase / genetics*

Substances

  • UTP-Hexose-1-Phosphate Uridylyltransferase
  • Glucose