Reduction of total and LDL cholesterol reduces atherosclerosis and clinical cardiovascular events. High density lipoprotein (HDL) cholesterol levels have a strong inverse association with atherosclerosis, and overexpression of apolipoprotein A-I (apoA-I), the major protein component of HDL, reduces atherosclerosis in hypercholesterolemic animals. However, little is known about the potential for additive or synergistic effects between cholesterol reduction and apoA-I overexpression on atherosclerosis. In the current study, we tested the hypothesis that significant reduction of plasma cholesterol combined with overexpression of apoA-I would reduce atherosclerosis to a greater extent than either one alone. We used somatic gene transfer of the LDL receptor (to induce cholesterol reduction) and apoA-I in LDL receptor deficient mice fed a Western type diet and compared the combination to expression of each gene alone and to controls. Atherosclerosis was quantitated using two independent methods, by en face analysis of the entire aorta and by cross-sectional analysis of the aortic root. Although the reduction of cholesterol was transient, expression of the LDL receptor alone significantly reduced atherosclerosis by 45% in the aorta and 44% in the aortic root compared with controls. Overexpression of human apoA-I alone reduced atherosclerosis by 42% in the aorta and 44% in the aortic root compared with controls. Co-expression of the LDL receptor with apoA-I resulted in significantly higher levels of apoA-I than expression of apoA-I alone. Although co-expression of the LDL receptor and apoA-I reduced atherosclerosis by 37% in the aorta and 32% in the aortic root compared with controls, the reduction in atherosclerosis was no different than that seen with expression of the LDL receptor alone or apoA-I alone. In summary, in this relatively short-term murine model, simultaneous reduction of cholesterol and expression of apoA-I was associated with higher levels of apoA-I than expression of apoA-I alone but did not result in greater reduction in atherosclerosis compared with either one alone.