Development of a novel diffusion-based method to estimate the size of the aggregated Abeta species responsible for neurotoxicity

Biotechnol Bioeng. 2002 Oct 5;80(1):50-9. doi: 10.1002/bit.10347.

Abstract

beta-Amyloid peptide (Abeta) is the primary protein component of senile plaques in Alzheimer's disease and is believed to be responsible for the neurodegeneration associated with the disease. Abeta is toxic only when aggregated, however, the size and structure of the aggregated species associated with toxicity is unknown. In the present study, we developed a diffusion-based method to simultaneously separate and detect the biological activity of toxic Abeta oligomers and used the method to examine the relationship between size of aggregated protein and toxicity to SH-SY5Y cells. From these measurements, the effective diffusivity and hydrodynamic radius of the toxic oligomeric species of Abeta could be determined. A sensitivity analysis was performed to examine the effects of model assumptions used in data analysis on the effective diffusivity calculated. The method provides a new estimate of the size of small toxic Abeta species associated with fibril formation. This work contributes to our understanding of the relationship between Abeta structure and toxicity and with further refinements may aid in our ability to design agents which alter the Abeta aggregation/dissociation processes associated with neurotoxicity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / etiology
  • Alzheimer Disease / metabolism*
  • Amyloid beta-Peptides / analysis*
  • Amyloid beta-Peptides / chemistry
  • Amyloid beta-Peptides / toxicity*
  • Cell Survival
  • Diffusion
  • Equipment Design
  • Flow Cytometry / instrumentation
  • Flow Cytometry / methods
  • Humans
  • Macromolecular Substances
  • Models, Biological
  • Molecular Weight
  • Neuroblastoma / metabolism
  • Neuroblastoma / physiopathology
  • Protein Interaction Mapping
  • Reference Values
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Sepharose
  • Species Specificity
  • Toxicity Tests / instrumentation
  • Toxicity Tests / methods
  • Tumor Cells, Cultured

Substances

  • Amyloid beta-Peptides
  • Macromolecular Substances
  • Sepharose