Multivalent MHC class II molecules containing peptide antigens are useful tools for the detection of antigen specific human CD4+ T cells. Tetramers produced by exogenous peptide loading onto empty class II molecules are comparable to tetramers with peptide tethered to the class II chain covalently, but have many practical advantages. Conditions for optimal peptide loading to generate tetramers are discussed and optimal conditions of using tetramers for staining T cells are examined. As the frequency of antigen specific CD4+ T cells in peripheral blood is low, we demonstrate that an in vitro expansion step is effective in detecting low frequency T cells. Two new applications with tetramers, their uses for mapping T cell epitopes and for the detection of low affinity T cells are described. In a clinical setting, potential applications include using these reagents for monitoring disease progression during clinical intervention.