Human populations are endowed with a sophisticated genetic diversity of complement C4 and its flanking genes RP, CYP21, and TNX in the RCCX modules of the major histocompatibility complex class III region. We applied definitive techniques to elucidate (a) the complement C4 polymorphisms in gene sizes, gene numbers, and protein isotypes and (b) their gene orders. Several intriguing features are unraveled, including (1) a trimodular RCCX haplotype with three long C4 genes expressing C4A protein only, (2) two trimodular haplotypes with two long (L) and one short (S) C4 genes organized in LSL configurations, (3) a quadrimodular haplotype with four C4 genes organized in a SLSL configuration, and (4) another quadrimodular structure, with four long C4 genes (LLLL), that has the human leukocyte antigen haplotype that is identical to ancestral haplotype 7.2 in the Japanese population. Long-range PCR and PshAI-RFLP analyses conclusively revealed that the short genes from the LSL and SLSL haplotypes are C4A. In four informative families, an astonishingly complex pattern of genetic diversity for RCCX haplotypes with one, two, three and four C4 genes is demonstrated; each C4 gene may be long or short, encoding a C4A or C4B protein. Such diversity may be related to different intrinsic strengths among humans to defend against infections and susceptibilities to autoimmune diseases.