This study investigated the effects of high flow and shear stress on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-2 (TIMP-2) during flow-induced arterial enlargement using a model of arteriovenous fistula (AVF) creation on the carotid artery with the corresponding jugular vein in Japanese white male rabbits. Flow increased 8-fold 7 days after AVF. Endothelial cells (EC) and smooth muscle cells (SMC) proliferated with internal elastic lamina (IEL) degradation in response to high flow and shear stress. Expression of MMP-2 mRNA peaked at 2 days (1700-fold) and maintained high level expression. MMP-9 mRNA gave a 10.8-fold increase within 2 days and decreased later. Their proteins were detected in EC and SMC. Membrane type-1-MMP (MT1-MMP) mRNA increased 121-fold at 3 days and maintained high expression. TGF-beta1 was increased after AVF. Two-peak up-regulation of Egr-1 mRNA was recognized at 1 and 5 days of AVF. These results suggest that high flow and shear stress can mediate EC and SMC to express MMP-2 and MMP-9, which degrade cell basement membranes and IEL to induce arterial enlargement. The disproportional increase in MT1-MMP and TIMP-2 might contribute to MMP-2 activation. Egr-1 and TGF-beta1 might play important roles in this process.