Cooperative effects of genetic alterations are frequently observed during carcinogenesis. Mice carrying germ-line mutations in both Rb and p53 or Msh2 and p53 die earlier of tumors than mice with only one of these genes inactivated. Mice with a single wild-type Rb allele develop a syndrome of multiple neuroendocrine neoplasia, and inactivation of both alleles of Msh2 gene predisposes mice to gastrointestinal cancer, lymphomas and tumors of the skin that exhibit a mismatch repair defect. Here we showed that Msh2(-/-)Rb(+/-) mice developed lymphomas later than Msh2-deficient littermates, and the lymphomas observed in Msh2(-/-)Rb(+/-) mice have increased rates of apoptosis and rarely spread to other organs and tissues. In contrast to lymphomagenesis, courses of neuroendocrine, intestinal, and skin carcinogenesis were not significantly influenced by the Msh2(-/-)Rb(+/-) genetic combination. In these mice, neuroendocrine tumors displayed a loss of the remaining wild-type Rb allele but did not show microsatellite instability. On the other hand, the intestinal and skin tumors exhibited microsatellite instability but kept the remaining wild-type allele of Rb. Taken together, these data not only revealed a novel biological interaction between Rb and Msh2 but also cell lineage specificity effects associated with multiple deficiencies in these tumor susceptibility genes.