To assess whether growth plate-specific production of sex steroids is possible, we have surveyed the presence of several key-enzymes involved in androgen and estrogen metabolism in the tibial growth plate of female and male rats during development. Using in situ hybridization, mRNAs of aromatase p450, type I and II 17beta-hydroxysteroid dehydrogenase (HSD), steroid sulfatase (STS), and 5alpha-reductase were detected in proliferating and hypertrophic chondrocytes of the growth plate. The former three were strongly up-regulated around sexual maturation (7 wk), whereas the latter two were expressed at a relatively constant level during development. These data were supported by measuring aromatase, type I 17beta-HSD, and STS enzyme activities in chondrocytes collected from tibial growth plates at 1 and 7 wk of age. Of the enzymes studied, there were minor differences between the sexes in aromatase and 5alpha-reductase expression only. In conclusion, our findings clearly indicate the presence of various enzymes involved in sex steroid metabolism in the tibial growth plate, especially in sexually maturing rats, a timepoint at which sex steroids have major effects on longitudinal growth. Our data suggest that intracrinology in the rat growth plate can occur and may be a major source of local sex steroid delivery.