Background: Guanylyl cyclase (GC)-A, a natriuretic peptide receptor, lowers blood pressure and inhibits the growth of cardiac myocytes and fibroblasts. Angiotensin II (Ang II) type 1A (AT1A), an Ang II receptor, regulates cardiovascular homeostasis oppositely. Disruption of GC-A induces cardiac hypertrophy and fibrosis, suggesting that GC-A protects the heart from abnormal remodeling. We investigated whether GC-A interacts with AT1A signaling in the heart by target deletion and pharmacological blockade or stimulation of AT1A in mice.
Methods and results: We generated double-knockout (KO) mice for GC-A and AT1A by crossing GC-A-KO mice and AT1A-KO mice and blocked AT1 with a selective antagonist, CS-866. The cardiac hypertrophy and fibrosis of GC-A-KO mice were greatly improved by deletion or pharmacological blockade of AT1A. Overexpression of mRNAs encoding atrial natriuretic peptide, brain natriuretic peptide, collagens I and III, transforming growth factors beta1 and beta3, were also strongly inhibited. Furthermore, stimulation of AT1A by exogenous Ang II at a subpressor dose significantly exacerbated cardiac hypertrophy and dramatically augmented interstitial fibrosis in GC-A-KO mice but not in wild-type animals.
Conclusions: These results suggest that cardiac hypertrophy and fibrosis of GC-A-deficient mice are partially ascribed to an augmented cardiac AT1A signaling and that GC-A inhibits AT1A signaling-mediated excessive remodeling.