Objective: Galectin-12 has recently been shown to be a predominantly adipocyte-expressed protein which is stimulated by insulin-sensitizing thiazolidinediones and possesses apoptosis-inducing activity.
Methods: To further clarify galectin-12 regulation and its potential involvement in the development of insulin resistance, 3T3-L1 adipocytes were chronically treated with various hormones known to impair insulin sensitivity, and galectin-12 mRNA was measured by quantitative real-time reverse transcription-polymerase chain reaction.
Results: Treatment of 3T3-L1 cells for 16 h with 10 micromol/l isoproterenol, 100 nmol/l insulin, 0.6 nmol/l tumor necrosis factor alpha (TNFalpha), and 100 nmol/l dexamethasone reduced galectin-12 gene expression between 47% and 85%. These negative effects were dose-dependent with significant inhibition detectable at concentrations as low as 10 nmol/l isoproterenol, 0.06 nmol/l TNFalpha, and 1 nmol/l dexamethasone. Furthermore, the inhibitory effect of isoproterenol could be almost completely reversed by pretreatment with the beta-adrenergic antagonist propranolol and mimicked by stimulation of G(S)-proteins with cholera toxin or by activation of adenylyl cyclase with forskolin and dibutyryl-cAMP.
Conclusions: Our results suggest that galectin-12 is an adipocyte-expressed protein which is downregulated by various insulin resistance-inducing hormones. These findings imply a role for galectin-12 in the pathogenesis of insulin resistance.