We have examined the specificity of oleate as an activator of phospholipase D2 (PLD2) and whether it can be used to study PLD2 localization and its involvement in cell function. Oleate stimulates PLD activity in intact RBL-2H3 mast cells. Comparing PLD1- with PLD2-overexpressing cells, oleate enhanced PLD activity only in PLD2-overexpressing cells. Membranes were also sensitive to oleate and when membranes prepared from PLD1- and PLD2-overexpressing cells were examined, oleate further increased PLD activity only in membranes from PLD2-overexpressing cells. Overexpressed green fluorescent protein (GFP)-PLD2 fusion protein was localized at the plasma membrane and GFP-PLD1 was found in an intracellular vesicular compartment. Oleate was used to examine whether overexpressed PLD2 co-localized with endogenous PLD2. RBL-2H3 mast cell homogenates were fractionated on a linear sucrose gradient and analysed for both oleate-stimulated activity and ADP ribosylation factor 1-stimulated PLD1 activity. The oleate-stimulated activity co-localized with markers of the plasma membrane including the beta-subunit of the FcepsilonRI and linker for activation of T cells. Fractionation of homogenates from PLD2-overexpressing cells demonstrated that the overexpressed PLD2 fractionated in an identical location to the endogenous oleate-stimulated activity and this activity was greatly enhanced in comparison with control membranes. Examination of membranes prepared from COS-7, Jurkat and HL60 cells indicated a relationship between oleate-stimulated PLD2 activity and PLD2 immunoreactivity. We examined whether oleate could be used to activate secretion and membrane ruffling in adherent RBL-2H3 mast cells. Oleate did not stimulate secretion but did stimulate membrane ruffling, which was short-lived. We conclude that oleic acid is a selective activator of PLD2 and can be used for localization studies, but its use as an activator of PLD2 in intact cells to study function is limited due to toxicity.