Studies in humans and in experimental models of HIV-1 infection indicate an important role for monocyte chemoattractant protein-1 (MCP-1; also known as CC chemokine ligand 2), a potent chemoattractant and activator of mononuclear phagocytes (MP) in the pathogenesis of HIV-associated dementia (HAD). We determined the influence of genetic variation in MCP-1 on HIV-1 pathogenesis in large cohorts of HIV-1-infected adults and children. In adults, homozygosity for the MCP-1 -2578G allele was associated with a 50% reduction in the risk of acquiring HIV-1. However, once HIV-1 infection was established, this same MCP-1 genotype was associated with accelerated disease progression and a 4.5-fold increased risk of HAD. We examined the molecular and cellular basis for these genotype-phenotype associations and found that the mutant MCP-1 -2578G allele conferred greater transcriptional activity via differential DNA-protein interactions, enhanced protein production in vitro, increased serum MCP-1 levels, as well as MP infiltration into tissues. Thus, MCP-1 expression had a two-edged role in HIV-1 infection: it afforded partial protection from viral infection, but during infection, its proinflammatory properties and ability to up-regulate HIV-1 replication collectively may contribute to accelerated disease progression and increased risk of dementia. Our findings suggest that MCP-1 antagonists may be useful in HIV-1 infection, especially for HAD, and that HIV+ individuals possessing the MCP-1 -2578G allele may benefit from early initiation of antiretroviral drugs that effectively cross the blood-brain barrier. In a broader context, the MCP-1 -2578G allele may serve as a genetic determinant of outcome of other disease states in which MP-mediated tissue injury is central to disease pathogenesis.