General patterns of taxonomic and biomass partitioning in extant and fossil plant communities

Nature. 2002 Oct 10;419(6907):610-3. doi: 10.1038/nature01069.

Abstract

A central goal of evolutionary ecology is to identify the general features maintaining the diversity of species assemblages. Understanding the taxonomic and ecological characteristics of ecological communities provides a means to develop and test theories about the processes that regulate species coexistence and diversity. Here, using data from woody plant communities from different biogeographic regions, continents and geologic time periods, we show that the number of higher taxa is a general power-function of species richness that is significantly different from randomized assemblages. In general, we find that local communities are characterized by fewer higher taxa than would be expected by chance. The degree of taxonomic diversity is influenced by modes of dispersal and potential biotic interactions. Further, changes in local diversity are accompanied by regular changes in the partitioning of community biomass between taxa that are also described by a power function. Our results indicate that local and regional processes have consistently regulated community diversity and biomass partitioning for millions of years.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biological Evolution
  • Biomass
  • Ecology
  • Ecosystem
  • Fossils*
  • Mammals
  • Models, Biological
  • Phylogeny
  • Plants / classification*
  • Plants / genetics