Long interspersed nuclear elements (LINE-1, L1) constitute a large family of mammalian retrotransposons that have been replicating and evolving in mammals for more than 100 million years and now compose 17% of the human genome. They have an important creative role in human genomic evolution through mechanisms such as new integrations, generation of processed pseudogenes, and transfer of non-L1 DNA flanking their 3' ends to new genomic locations. Here we present evidence that the L1 integration machinery was used for the creation of a new family of chimeric retrotranscripts, which contain a full copy of U6 small nuclear RNA and a 3' part of L1 at their 5' and 3' ends, respectively. There are at least 56 members of this family in the human genome. The integrations of such fused retrotranscripts into the human genome took place until recently. Here we report one U6-L1 insertion that is polymorphic in humans. We also propose a mechanism used to generate chimeric retrotranscripts.