Whole-cell recordings of EPSCs and G-protein-activated inwardly rectifying (GIRK) currents were made from cultured hippocampal neurones to determine the effect of long-term agonist treatment on the presynaptic and postsynaptic responses mediated by GABA(B) receptors (GABA(B)Rs). GABA(B)R-mediated presynaptic inhibition was unaffected by agonist (baclofen) treatment for up to 48 h, and was desensitized by about one-half after 96 h. In contrast, GABA(B)R-mediated GIRK currents were desensitized by a similar amount after only 2 h of agonist treatment. In addition, presynaptic inhibition mediated by A(1) adenosine receptors (A(1)Rs) was unaffected by prolonged GABA(B)R activation, whereas A(1)R-mediated GIRK currents were desensitized. Desensitization of postsynaptic GABA(B)R and A(1)R responses was blocked by the GABA(B)R antagonist (1-(S)-3,4-dichlorophenylethyl)amino-2-(S) hydroxypropyl-p-benzyl-phosphonic acid (CGP 55845A), but not by the A(1)R antagonist cyclopentyldipropylxanthine (DPCPX). GIRK current amplitude could be partially restored after baclofen treatment by either coapplication of baclofen and adenosine, or intracellular infusion of the non-hydrolysable GTP analog 5'-guanylylimidodiphosphate (Gpp(NH)p). Short-term (4-24 h) baclofen treatment also significantly desensitized the inhibition of postsynaptic voltage-gated calcium channels by activation of GABA(B)Rs or A(1)Rs. These results show that responses mediated by GABA(B)Rs and A(1)Rs desensitize differently in presynaptic and postsynaptic compartments, and demonstrate the heterologous desensitization of postsynaptic A1R responses.