A combined analytical method has been developed to characterize the size dependent levels of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) contained in fly ash particles from a municipal solid waste incinerator (MSWI). Gravitational SPLITT fractionation (GSF), a relatively new technique for the fast and continuous separation of micron sized particles, was used to fractionate a fly ash sample, directly collected from a bag-filter house of MSWI in Korea, into six different size groups (<1.0, 1.0-2.5, 2.5-5.0, 5.0-10, 10-20, and 20-53 microm in diameter) in water solution, and the resulting fractions are examined by high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS) in order to determine the concentration of PCDD/Fs according to these particle sizes. The results from SPLITT fractionation show that approximately 54% of the fly ash particles (sieved fraction <53 microm) by weight have been found to be smaller than 5.0 microm excluding the water soluble matter in the sample. From the HRGC/HRMS measurements, particle fractions in the size range of PM 1.0-2.5 and 2.5-5.0 appear to carry about 76 and 79 ng/g of PCDD/Fs which are relatively larger than those found in other diameter ranges. Principal component analysis (PCA) shows that particles larger than 5.0 microm are clustered into a group predominantly containing low chlorinated dioxins and fractions smaller than 5.0 microm into another group with lower chlorinated furans. This study demonstrated that the combining GSF with a secondary analytical method such as HRGC/HRMS has the potential to obtain size dependent information of particulate materials in relation to their production processes, chemical compositions, environmental fates, and other factors.