In visual transduction, guanylate cyclase-activating proteins (GCAPs) activate the membrane-bound guanylate cyclase 1 (ROS-GC1) to synthesize cGMP under conditions of low cytoplasmic [Ca2+]free. GCAPs are neuronal Ca2+-binding proteins with three functional EF-hands and a consensus site for N-terminal myristoylation. GCAP-1 and GCAP-2 regulated ROS-GC1 activities differently. The myristoyl group in GCAP-1 had a strong influence on the Ca2+-dependent regulation of ROS-GC1 (shift in IC50). In contrast, myristoylation of GCAP-2 did not change the cyclase activation profile (no shift in IC50). Thus, the myristoyl group controlled the Ca2+-sensitivity of GCAP-1, but not that of GCAP-2. The myristoyl group restricted the accessibility of one cysteine in GCAP-1 and GCAP-2 observed by measuring the time-dependent thiol reactivity of cysteines. This shielding effect was not relieved when Ca2+ was buffered by EGTA. We applied surface plasmon resonance (SPR) spectroscopy to monitor the Ca2+-dependent binding of myristoylated and nonmyristoylated GCAP-1 and GCAP-2 to immobilized phospholipid membranes. None of the GCAPs exhibited a Ca2+-myristoyl switch as observed for recoverin. Thus, the myristoyl group controls the Ca2+-sensitivity of GCAP-1 (not that of GCAP-2) by an allosteric mechanism, but this control step does not involve a myristoyl switch.