In a wide variety of cells, mitogenic factors release Ca(2+) from intracellular stores. The fall of the [Ca(2+)] within the lumen of the Ca(2+)-storing organelles triggers in many cells capacitative Ca(2+) entry (CCE). The present study was performed to elucidate the effect of insulin-like growth factor (IGF-1) on CCE in human embryonic kidney (HEK 293) cells. After depletion of Ca(2+) stores by thapsigargin, CCE was assessed by the increase in cytosolic free [Ca(2+)] (Fura-2 fluorescence imaging) when raising extracellular [Ca(2+)] from 0 to physiological concentrations. IGF-1 exposure (50 ng/ml) for 4 h in serum-free medium markedly enhanced CCE, while a 24-h exposure to IGF-1 depressed CCE profoundly. As some Ca(2+) channels are highly sensitive to the cell membrane potential, and as IGF-1 has been reported to enhance K(+) channel activity, the influence of K(+) channel blockers on the IGF-1-dependent stimulation of CCE was also tested. TEA, charybdotoxin and margatoxin decreased CCE. Similar to the total capacitative calcium entry, the fraction of CCE that was sensitive to K(+) channel blockers was increased after 4 h and decreased after 24 h exposure to IGF-1. Taken together, these data suggest that IGF-1 induces a transient increase followed by a decrease of CCE, and that these effects are at least partly dependent on IGF-1-induced K(+) channel activity.