Rationale: Atypical antipsychotics such as clozapine and olanzapine have a low liability for producing motor side effects. In addition to being D2 antagonists, these drugs have a complex binding profile that includes affinity for muscarinic, alpha, H1, and various serotonin receptors. Previous work in rats has shown that atypical antipsychotics suppress tremulous jaw movements induced by the anticholinesterase tacrine in rats. Cholinomimetic-induced jaw movements are a putative model of parkinsonian tremor, and the ability of antipsychotic drugs to suppress these movements in rats is correlated with motor side-effect liability in humans.
Objective: The present work was undertaken to study the role of central serotonin receptors in the generation of cholinomimetic-induced jaw movements.
Results: Systemic injections of the serotonin antagonist mianserin suppressed tacrine-induced jaw movements, with an ED(50) of 2.77 mg/kg. Local injections of mianserin directly into substantia nigra pars reticulata (SNr) also suppressed tacrine-induced jaw movements. Injections into ventrolateral neostriatum, or a control site dorsal to SNr, failed to have any effects on jaw movement activity.
Conclusions: These studies suggest that atypical antipsychotics may act both on striatal muscarinic receptors and nigral serotonin receptors to suppress jaw movement activity. It is possible that the unique motor properties of atypical antipsychotics result from actions on multiple receptors in several brain areas. The precise serotonin receptor subtype involved in these effects is unknown, and future work will examine the effects of drugs that act selectively on 5-HT(2A) and 5-HT(2C) receptors.