HIV-1 Vpr displays natural protein-transducing properties: implications for viral pathogenesis

Virology. 2002 Oct 10;302(1):95-105. doi: 10.1006/viro.2002.1576.

Abstract

The 14-kDa Vpr protein of human immunodeficiency virus type 1 (HIV-1) serves multiple functions in the retroviral life cycle, including the enhancement of viral replication in nondividing macrophages, the induction of G2 cell-cycle arrest in proliferating T lymphocytes, and the modulation of HIV-1-induced apoptosis. Extracellular Vpr has been detected in the sera and cerebral spinal fluid of HIV-infected patients. However, it is not known whether such forms of Vpr are biologically active. Vpr contains a carboxy-terminal basic amino acid rich segment stretch that is homologous to domains that mediate the energy- and receptor-independent cellular uptake of polypeptides by a process termed protein transduction. Similar functional protein-transducing domains are present in HIV-1 Tat, herpes simplex virus-1 DNA-binding protein VP22, and the Drosophila antennapedia homeotic transcription factor. We now demonstrate effective transduction of biologically active, synthetic Vpr (sVpr) as well as the Vpr-beta-galactosidase fusion protein. However, in contrast to other transducing proteins, Vpr transduction is not enhanced by protein denaturation, and Vpr's carboxy-terminal basic domain alone is not sufficient for its transduction across biological membranes. In contrast, the full-length Vpr protein effectively transduces a broad array of cells, leading to dose-dependent G2 cell-cycle arrest and apoptosis. Addition of Vpr into the extracellular medium also rescues the replication of Vpr-deficient strains of HIV-1 in human macrophage cultures. Native Vpr may thus be optimized for protein transduction, a feature that might enhance and extend the pathological effects of HIV infection.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cell Line, Transformed
  • Gene Products, vpr / genetics
  • Gene Products, vpr / metabolism*
  • HIV-1 / metabolism*
  • HeLa Cells
  • Humans
  • Jurkat Cells
  • vpr Gene Products, Human Immunodeficiency Virus

Substances

  • Gene Products, vpr
  • vpr Gene Products, Human Immunodeficiency Virus