Mono- and disaccharide-containing glycopolymers were synthesized by two different free-radical processes, and their ability to act as heparan sulfate glycomimetics in promoting the binding of Fibroblast Growth Factor-2 (FGF-2) to its receptor (FGFR-1) was evaluated using an in vitro cell-based assay. Cyanoxyl (*OC triple bond N)-mediated polymerization of acrylamide with alkene-derivatized mono- and disaccharides including sulfated or nonsulfated N-acetyl-D-glucosamine is described. The results of this approach are compared to those obtained via the classical ammonium peroxodisulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TMEDA) initiating system and confirm the capacity of cyanoxyl-mediated polymerization to generate a variety of glycopolymers with high saccharide contents and low polydispersity indexes. In vitro assays demonstrate that specific glycopolymers can potentiate FGF-2/FGFR-1 binding interactions.