Bacteria of Shigella spp. use a virulence plasmid-encoded type III secretion (TTS) system to invade the colonic epithelium in humans. The activity of the TTS apparatus is tightly regulated in the wild-type strain and is induced upon contact of bacteria with epithelial cells, whereas it is deregulated, i.e., constitutively active, in some mutants. Under conditions of deregulated secretion, approximately 20 proteins are secreted, including VirA, OspB to OspG, and at least three members of the IpaH family, all of which are encoded by the virulence plasmid. Conditions inducing or deregulating the activity of secretion also induce the transcription of virA and four ipaH genes. The transcription of virA and ipaH9.8 requires both MxiE, a transcriptional activator of the AraC family, and IpgC, the chaperone of IpaB and IpaC, acting as a coactivator. Using reporter plasmids containing lacZ transcriptional fusions, we showed that the ipaH7.8. ipa4.5. ospC1, and ospF promoters are activated under conditions of deregulated secretion and that both MxiE and IpgC are necessary and sufficient for their activation in both Shigella flexneri and Escherichia coli. Promoter mapping and deletion analysis of the ipaH9.8. virA, and ospC1 promoters identified a 17-bp motif, the MxiE box, which overlaps the -35 region and is essential for the activation of these promoters. The presence of eight MxiE boxes on the virulence plasmid suggests that 11 genes encoding secreted proteins may be regulated by the activity of secretion. We also present evidence that at least one ipaH gene that is carried by the chromosome is controlled by MxiE and IpgC.