Afadin is an actin filament (F-actin)-binding protein that is associated with the cytoplasmic tail of nectin, a Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecule. Nectin and afadin strictly localize at cell-cell adherens junctions (AJs) undercoated with F-actin bundles and are involved in the formation of AJs in cooperation with E-cadherin in epithelial cells. In epithelial cells of afadin (-/-) mice and (-/-) embryoid bodies, the proper organization of AJs is markedly impaired. However, the molecular mechanism of how the nectin-afadin system is associated with the E-cadherin-catenin system or functions in the formation of AJs has not yet been fully understood. Here we identified a novel afadin-binding protein, named ADIP (afadin DIL domain-interacting protein). ADIP consists of 615 amino acids with a calculated M(r) of 70,954 and has three coiled-coil domains. Northern and Western blot analyses in mouse tissues indicated that ADIP was widely distributed. Immunofluorescence and immunoelectron microscopy revealed that ADIP strictly localized at cell-cell AJs undercoated with F-actin bundles in small intestine absorptive epithelial cells. This localization pattern was the same as those of afadin and nectin. ADIP was undetectable at cell-matrix AJs. ADIP furthermore bound alpha-actinin, an F-actin-bundling protein known to be indirectly associated with E-cadherin through its direct binding to alpha-catenin. These results indicate that ADIP is an afadin- and alpha-actinin-binding protein that localizes at cell-cell AJs and may have two functions. ADIP may connect the nectin-afadin and E-cadherin-catenin systems through alpha-actinin, and ADIP may be involved in organization of the actin cytoskeleton at AJs through afadin and alpha-actinin.