The composition of fatty acids synthesized de novo by thirty strains of zygomycetes from various taxa was studied. The qualitative fatty acid compositions of the fungal lipids were found to be virtually identical, but there were significant differences in the contents of individual acids. Highly active producers of essential C18 fatty acids, with their content exceeding 30-40% of total fatty acids, were discovered among the fungi of the families Mucoraceae, Pilobolaceae, and Radiomycetaceae. Linoleic acid was found to predominate in the fungi of the genera Radiomyces, Mycotypha, and Circinella, and linolenic acid (identified as its gamma-isomer by gas-liquid chromatography), in the fungi of the genera Absidia, Circinella, Pilaira, and Hesseltinella. The total yield (mg/l) of bioactive acids (C18:3, C18:2, C18:1) varied from 761.4 in Pilaira anomala to 3477.9 in Syncephalastrum racemosum; the total yield of essential acids, from 520.7 in Pilaira anomala to 1154.5 in Hesseltinella vesiculosa; of linoleic acid, from 279.7 in Pilaira anomala to 836.3 in Mycotypha indica; and of linolenic acid, from 120.8 in Mycotypha indica to 708.0 in Hesseltinella vesiculosa. The data on the efficient synthesis of these acids make the actively producing strains promising for biotechnological synthesis of commercially valuable lipids. Linderina pennispora VKM F-1219, a zygomycete of the family Kickxellaceae, which was earlier singled out into the order Kickxellales [12], was shown to differ from zygomycetes of the order Mucorales in having a high content of cis-9-hexadecenoic (palmitoleic) acid, reaching 37.0% of the fatty acid total.