We reported previously that an ndhB gene disruptant, delta ndhB, had the same phenotype as wild-type tobacco plants under normal growth conditions. Two other groups have reported conflicting phenotypes with each other for ndhCKJ operon disruptants. Here, we generated two transformants in which the ndhCKJ operon was disrupted, and found that new transformants had the same phenotype as delta ndhB. After illumination with visible light, all ndh disruptants had higher levels of steady-state fluorescence than wild-type controls when measured under weak light, suggesting that reduction of the plastoquinone pool in ndh disruptants was greater than that in wild-type controls. The weak light itself could not reduce the plastoquinone much, so the reduction in the plastoquinone in the mutant was due to electron donation from stromal reductants generated during illumination with the strong light. These results supported the hypothesis that NAD(P)H dehydrogenase prevents overreduction in chloroplasts and suggested that chlororespiratory oxidase did not function under low light or in the dark.